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ABSTRACT

The equations of horizontal motion of the neutral atmosphere be-

tween 120 and 500 km are integrated with the inclusion of all the non-

linear terms of the convective derivative and the viscous forces due to

vertical and horizontal velocity gradients. Empirical models of the

distribution of neutral and charged particles are assumed to be known.

The model of velocities developed is a steady state model. In part 1

the mathematical method used in the integration of the Navier-Stokes

equations is described and the various forces are analysed.
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FULL NON-LINEAR TREATMENT OF THE

GLOBAL THERMOSPHERIC WIND SYSTEM.

Introduction

The wind system of the thermosphere has been a subject of a considerable

number of observational and theoretical investigations during the last decade.

A knowledge of this wind system is required for an understanding of the struc-

ture of the neutral atmosphere and its energy balance and the ionosphere. It

has been suggested that the solution of the phase problem (the phases of the

density and temperature in the thermosphere) of the neutral atmosphere is in-

timately connected with the wind system. Many ionospheric effects concerning

the latitudinal distribution of charged particles, the daily variation of electron

density and the maintenance of the nighttime ionosphere cannot be fully explained

without taking into account the effect of the atmospheric wind system.

Several computations of the thermospheric wind pattern have been made.

All of them solve the horizontal equations of motion and assume hydrostatic

equilibrium. There are two general approaches: (1) a perturbation treatment

of the full set of hydrodynamic equations (Lindzen (1970); Volland and Mayr

(1970 and 1972); (2) a solution of the equation of motion using a given model of

atmospheric structure (Geisler (1967); Bailey et al. (1969); Challinor (1970);

Cho and Yeh (1970)k; Riester and Dudeney, (1972)). The various computations

1
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differ in the assumptions regarding the treatment of the ion and viscous drag.

All of them have in common that the non-linear terms of the convective deriva-

tive of the flow velocity were not fully included. Especially the non-linear terms

due to meridional velocity gradients have not been included in the computation

by any of the investigators.

We have chosen the second approach, i.e., we have used in our calculations

the atmospheric model of Jacchia (1965) and the Penn State Ionospheric Model

of Nisbet (1970) and solved the full Navier-Stokes equations including all non-

linear terms and the full expression for the viscous forces. None of the earlier

papers have included in the computations of the viscous terms the horizontal

velocity gradients.

1. MATHEMATICAL METHOD

The Steady State

The neutral air motions treated here are steady state motions. The steady

state refers to the sun's system. All variables like density, temperature, veloci-

ties and the various forces are assumed to be independent of universal time in a

coordinate system fixed with respect to the sun, if we limit ourselves to periods

of a few days. Variations with universal time due to the changing declination of

the sun, solar activity or the semi-annual density variation are not excluded,

but each change of this type is treated as a separate model calculation. There-

fore for each day of the year and a given solar activity our set of equations has

2
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three independent variables. For these we have chosen the height z, i.e. the

distance from the surface of the earth, the geographical co-latitude 0 and the

azimuth ~ referred to a coordinate system not rotating with the earth. ~ is

identical with the local time To These simplifying assumptions exclude the

treatment of physical processes that have a true universal (not local) time

dependence with time scales of a day or less. Such processes would include all

effects that are due to the inclination between the earth's axis and its magnetic

dipole. In the reference frame that rotates with the earth the independence from

universal time means that all variables depend only upon the combination k -wt

of geographical longitude A and universal time t, i.e. all phenomena are peri-

odic with the period 2 7/wo of one solar day. Non-recurring changes, sporadic

variations and variations that depend explicitly on longitude A and not only on

X= - cot are excluded from our treatment.

To obtain the appropriate form of the hydrodynamic equations for an observer

on the earth, we must first transform the equations to a frame rotating with the

earth and then take the limit to the steady state. Let 0 be the longitude in the

fixed frame and A the longitude in the rotating frame, and let t' be the time in the

rotating frame and t in the fixed frame. Then the transformation equations are

- = - cot (1)

t' = t

The partial derivative with respect to ~ and t are according to the chain rule

3
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X3~~~~~~ 3 B (2)

at =t, '

In the steady state we can let the partial derivative with respect to the time t

in the fixed frame go to zero and thus obtain the following relationship between

the time variations and the longitude variations for an observer on the earth

'a D (3)-a t a
at' D

Care must be exercised when this relationship is used; in particular one must

not try to describe transient phenomena using equations based upon these rela-

tionships. Boundary conditions imposed upon the equations must be consistent

with the assumption of the steady state.

It is to be noted that the solutions of the tidal equations (Chapman and

Lindzen, (1970)) that would correspond to the steady state are those for which

the parameters f and s (in their notation) of tidal theory have the ratio unity.

Equations of Motion

The Navier-Stokes equations in vector form in the rotating frame are

D + 2 xV- 77 div gradV- r/3 graddivV +f. = - (gradP)/p + g (4)
Dt

where V is the velocity vector, c the rotational velocity of the earth, fion the

ion drag force, P the pressure, p the density and 77 the kinematic viscosity.

We are concerned with the global wind pattern with periods of the order of

one day and its harmonics. The appropriate coordinate system for this problem

4
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is spherical. As the vertical velocities are smaller by more than one order of

magnitude than the horizontal velocities, we may solve the horizontal equations

neglecting the vertical velocity terms that appear in the convective derivative,

the Coriolis force and the viscous forces.

Let V() be the meridional velocity, measured positive from North to South,

and V() the zonal velocity, measured positive from West to East, then the

convective derivative of the velocities becomes

DV vv ( ~v v~ v
_ =g V + 1 (0V) - + VO° av(O (V(,))2 ctn
Dt r \ sin ? -a

(5)

DV(O -a c O +1 () + aver +V( ) V(W ) ctn ()
Dt 7 r \ / sin 0 a /

with 0 the co-latitude andk the longitude in the sun's system (or local time in

the earth's system) and r the distance from the center of the earth.

We have made use in these equations of the steady-state assumptions, i. e.,

we have assumed all variables to depend only upon local time and not explicitly

upon geographic longitude and universal time.

Substituting the expressions for the convective derivatives in the Navier-

Stokes equations and dividing byw, it is seen that the non-linear terms are

multiplied by a factor l/(owr). The numerical value of cwr is 462 m/sec. The

main inertial term WV/l is of the order of the velocity itself. Without detailed

calculations this suggests that for velocities that are lower by an order of

5
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magnitude thanwr it is to be expected that the non-linear terms have no marked

influence on the results. On the other hand for velocities that are comparable

or larger than cor it is essential to include the non-linear terms. This estimate

is based on the assumption that the derivatives of the velocities are of the order

of the velocities themselves (in the spherical coordinate system) which is ob-

viously true for the zonal derivatives, but may not be true, and indeed is not in

the equatorial region, for the meridional gradients.

The equations we now have to solve are a pair of non-linear coupled second

order partial differential equations with the three independent variables r, e

and b or r, 8 and T-. According to the steady state picture the solutions must be

periodic in local time (the variable -r), finite and continuous everywhere. The

boundary conditions in altitude specify a given distribution of velocities at the

lower boundary and a zero vertical gradient of horizontal velocities at the upper

boundary. Not every density model and ion distribution would result in a steady

state solution. This is seen by the simple considerations that pressure gradients

that are too large cannot be maintained due to the rapid flow which would tend

to equalize these pressure gradients. We shall assume that a solution exists

based upon empirical models of the atmosphere and ion distribution From the

assumption of the existence of the solution certain limitations of the velocity

distribution may be obtained. At equinox conditions, where from symmetry

considerations the meridional component of velocity is zero at the equator, the

equation for the zonal component of velocity becomes

6
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(1 D (T) V + 7 (T) -2V (6)
(1 +c ) IV'-+crr wz crp ~T ~r 2

where D is the ion drag coefficient for unit mass.

A theorem by Kallina (1970) states that a sufficient condition for the existence

of a periodic solution of equation (6) is that the coefficient (1 + V/w r) of

WV/Tr is positive for all 'r and r. Thus, in this simple case, we may expect a

periodic solution with the model pressure gradients and ion drag coefficients

as long as the zonal velocity in the westward direction remains less than the

earth's rotational velocity. However, if the zonal velocity exceeds the rotational

velocity of the earth in the westward direction then one would expect to obtain

exponential growing solutions and no periodic or steady state solution. A steady

state solution for such a model of the atmosphere and ionosphere would not

exist. If at any stage in the computational process one obtains zonal velocities

of this behaviour numerical instabilities will develop. For example, if the values

of the driving force divided by a would be used as initial values for V in an itera-

tive procedure for the solution of the steady state horizontal flow equations,

then with the model pressure gradients of the Jacchia model the numerical

solution would diverge. Kallina's theorem needs to be generalized in order to

guide us concerning the existence of a solution for the full set of equations (4)

for the horizontal flow under general conditions. Such a generalization is at

present not available.

7
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In a purely linear treatment this property of the velocity field would not be

apparent. Any model of atmospheric density and ion distribution results in a

steady state velocity field when the non-linear terms of the convective derivative

are neglected. Only the full non-linear treatment shows that the steady state

does not exist if certain conditions are not met, i. e. the ratio of the driving

forces to the drag forces is too large. It may be argued that Kallina's theorem

does not unequivocally show this property of the velocity field, as it treats only

a very simplified system of equations and furthermore gives only sufficient and

not necessary conditions for the existence of a steady state solution. On the

other hand we have made a large number of numerical model calculation that

indicated that a generalization of Kallina's theorem must be true. These model

calculations converged always when a parameter R, which indicated the ratio

between driving and drag forces, was smaller than a certain R0o. They diverged

for all models with R greater than R0 , thus indicating that steady state solutions

for such models do not exist. The value of R0 was well defined, a very small

excess of R over Ro caused the models to diverge immediately.

Method of Solution

The condition of periodicity will be satisfied if we expand each term of

equation (4) into Fourier modes with respect to local time. The velocity is

decomposed into average (or zero order), diurnal and semi-diurnal harmonic

components; each component is taken as a function of latitude and altitude.

8
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Also the pressure gradients divided by density, the kinematic viscosity and the

ion drag coefficient are expressed in a similar fashion. Accordingly the veloc-

ities will be expressed by

2

V(6) (q, 0, r) = (a(0 ) (0, r) cos 277kq5 + b( 9) (0, r) sin 27TkqS)

k O

(7)

2

V(¢)'(q, 0, r) = (a'() (0, r) cos 2Ik, + b?) (0, r) sin 27TkO)

k. 0

All products of Fourier terms which give rise to modes higher than the semi-

diurnal mode are dropped in the calculations. Thereby we have reduced the

problem to the solution of ten coupled non-linear partial differential equations

of second order for the ten unknown functions ak and bk (with b0 = 0) with altitude

and latitude as the independent variables. A finite difference scheme is used to

obtain the solutions. The derivatives with respect to latitude are replaced by

second order differences, except at the north and south poles, where forward

and backward differences are used respectively. The first derivative with

respect to altitude is not present in our equations. The second derivatives with

respect to altitude are replaced by normal second order differences. The bound-

ary conditions in altitude are expressed to second order accuracy (Varga, p. 191).

9
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Treatment of the Equations at the Poles

Previous investigations of the global wind field have either excluded the

polar regions of have used a simplified computational scheme (sometimes using

Cartesian coordinates). This can be done without great loss of accuracy if the

latitudinal coupling of the wind field is neglected. In our treatment such simpli-

fications are not possible. The inclusion of the poles in the computational

scheme requires some care and we therefore present some details of our

approach.

The boundary condition that the solution be single valued at the poles re-

quiires that all modes of the horizontal velocity but the diurnal mode vanish at

the poles as cma be seen by simple kinematical considerations. Furthermore,

the meridional and the zonal components of velocity are ninety degrees out of

phase. Thus we must have

a() =b( )- sig
(8)

(Ik) (8)
1 = - a, * sig

where sig = +1 at the north pole and -1 at the south pole. Also we have

a, = b= a.- h.- 0 (9)
k = k = k -

for k not equal to one. These kinematical boundary conditions at the poles

reduce the number of unknown velocity components at each pole from ten to two.

On the other hand the system of equations (4) yields four separate equations

(two for each of the diurnal modes for both the meridional and the zonal com-

ponents), so the problem seems to be overdetermined at the poles.

10
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Formally at the poles the Navier-Stokes equations appear to have a singu-

larity due to the factor (1/sin 0) that appears in some of the non-linear terms.

Let L( 8 ) and L() be thbse terms then

L( ) - V() [F V W V cos sin L 

(10)

L*- v(* [- v
~

LO V() Fa vL(o- + vn)> cos
sin 0 L +vuj9

But from boundary conditions (8) and (9) it is seen that the bracketed parts of

L ® and L(® vanish at the poles and L( 9 ) and L( become therefore inde-

terminate. To evaluate this indeterminate form of the non-linear terms we

have to apply L'Hospital's rule at the poles. The expressions (10) become

L(9) = V ® [F2 V() _Cos +>-
C 0os os a- ]

(11)

L()_ V(O F 2 V(O) +Cos aV
0os LU0 -a o

11
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We have to evaluate L(9 ) and L( for the diurnal modes only, as we have

already shown that the other modes vanish at the poles. It is easily seen that

the product V() 32 v/a 0 is zero also for the diurnal modes. Therefore at

the poles the expressions (11) are reduced to

L( o ) =_ V() aV()
a8

(12)

L(O) = V(O) aV( 8)

a9

Substituting (12) into the full expression of the convective derivative as given

by equations (5) we obtain

DV1 1 (() V( aV
Dt - r 

(13)

DV1 (°) =c(aV) j) + V(9 )D I _ + -- (v + 98+ V/)
D t~ 9q r 'a: /1

The subscript 1 means that the diurnal modes only are to be taken. Imposing

the additional requirement that the derivatives with respect to of the semi-diurnal

12



15

components vanish and again making use of the properties of the Fourier com-

ponents of velocity at the poles as given by (8) and (9) it is seen that the four

expressions for the convective derivative are reduced to two expressions. All

other terms of the Navier-Stokes equations, i. e. the driving forces, drag forces,

Coriolis forces etc. are also vectors in the horizontal shell given by r = constant.

For this reason the same kinematical conditions expressed by (8) and (9) hold

for all the terms of (4). Thus, from these considerations it is seen that at each

pole the four Navier-Stokes equations that remain (two for each of the diurnal

modes and velocity components) are really only two independent equations. The

over-determination of the problem at the poles is therefore only apparent and

not real. By using the procedure outlined above we have guaranteed that our

solutions will satisfy the Navier-Stokes equations at the poles and will be con-

tinuous over the whole globe.

Although the vertical velocity does not appear in our set of equations, it

should be remarked that the behaviour of the Fourier components of the vertical

velocity at the poles is completely different. All the modes of the vertical

velocity except the average (or zero) mode vanish identically at the poles.

The Iteration Procedure

The problem has now been reduced to a system of non-linear algebraic

equations where for each mesh point in latitude and altitude there are ten

unknowns and ten equations. If latitude differences of five degrees and altitude

differences of 20 km are chosen then for the altitude range of 120 km to 500 km

13
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there result 7400 equations with 7400 unknowns. These are reduced by our

boundary conditions at 120 km to 7030 unknowns. These equations are repre-

sented symbolically by

F(V) = R(14)

where F represents a non-linear matrix operator on the 7030 unknowns repre-

sented by the vector V. The vector R on the right hand side of (14) is derived

from the pressure gradients and also has 7030 components. The method adopted

to solve the above system of equations is a double iteration scheme consisting

of a single Newton-Ralphson procedure combined with a Gauss-Seidel iteration

(Ortega and Rheinboldt, p. 214). To apply the Newton-Ralphson technique we

expand about a previous iterative value V(i ), where for i = 0 we use some

initial estimate (usually zero). This may be expressed as

F(V( i
)) + aF(V()) (V(i+l) V()) R (15)

3V.

or

(V(i+ 1 ) - V R F (V)) (16)

where aF/3V is the Jacobian J or Frechet derivative. We shall denote V(i+) -

V ( ) by W( + l). Equation (16) results in the formal solution

V( i l ) = V( i ) +J-1(R - F(V(i) )) (17)
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or

w(i+I) = J-1 (R -F(V(i))) (18)

Obviously the direct inversion of the matrix J or the solution by an elimination

process is not possible with the present computational facilities. To obtain a

solution a double iteration scheme is required.

To accomplish this we may order the vector V and the Jacobian J in either

of two ways. The first method (hereafter referred to as method one) is illustrated

in figures 1 to 4. The matrix J is ordered into blocks where each block cor-

responds to a certain altitude. The blocks themselves are ordered into sub-

blocks according to latitude. These sub-blocks are matrices of order 10 x 10

according to the ten Fourier modes of the velocities. With this ordering the

Jacobian Matrix has the form of a tri-diagonal block form matrix in which the

non-linear terms appear only in the diagonal block. A Gauss-Seidel iteration

procedure is adopted, in which the matrix J is decomposed as follows

J = D - L - U (19)

where D, L, U are the diagonal, the lower tri-angular and upper tri-angular

matrices respectively. The matrices L and U in this case contain terms arising

only from the viscous coupling in the vertical direction. Let the index k denote

a fixed altitude and Dk, Lk and Uk the sub-blocks of D, L and U corresponding to

the index k. Then the system of equations (16) can be written as

Dk (Vk(i)) Wk(i+l) = LkWkxl("+ ) + UkWk+l(i) + (R - F(V(i-1)))k (20)

with k running from one to nineteen.
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The matrices Lk aLd Uk have diagonal block form. Equation (20) represents a

system of 370 non-homogeneous linear algebraic equations. The right hand side

is known explicitly. Due to the tri-diagonal form of Dk the solution can be ob-

tained by a tri-diagonal block elimination scheme (Varga, 1962, p. 196).

The matrices Dk , Lk and Uk are computed from algebraic expressions.

These algebraic expressions are obtained by differentiating the system of non-

linear algebraic difference equations with respect to the unknowns, i.e. the

components of V. The construction of these expressions, as well as the forma-

tion of the algebraic equations themselves, was performed with the aid of Formac

(Sammet, 1967), a computor program which performs algebraic manipulations.

An alternate scheme (method 2) is to order the vector V and the Jacobian

matrix according to 37 blocks of latitude. Each of the blocks of size 190 x 190

is ordered according to altitude. Thus the index k in equation (20) denotes a

fixed latitude. In this scheme the matrices Lk and Uk contain terms arising

from the non-linearities of the Navier Stokes equations. The matrix Dk is again

of tri-diagonal block form and the solution can be obtained by tri-diagonal block

elimination as described above. An advantage of this method (method 2) is that

with an initial value of zero for the velocities of the start of the iteration scheme

the velocities obtained from the first iteration are the solutions of the Navier-

Stokes equations when the non-linear and horizontal viscosity terms are ignored.

This linear solution will contain the full effects of vertical viscosity. Thus it

corresponds to the results of previous investigations (Geisler, 1967; Bailey et

al, 1968).
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The first method of ordering converged in all cases independent of mesh

size, though it required a large number of iterations. The second method of

ordering did not converge in all cases studied. Both methods yielded the same

solution when convergence was obtained. The second method was applied to

mesh sizes of five and ten degrees in latitude. Convergence was obtained at

equinox conditions for a ten degree mesh without difficulty. To obtain conver-

gence for the five degree mesh at equinox conditions a convergence factor

(Ortega, 1970, p. 187) was added to the diagonal elements of the Jacobian. Con-

vergence was obtained at solstice with a ten degree mesh in latitude also, by

adding a convergence factor to the Jacobian. No convergence was obtained at

solstice conditions with a five degree mesh in the second method, although

various weight factors and smoothing techniques were attempted. Also the

Jacobian method of iteration (Ortega, 1970) was attempted in this case with no

better success.

The second method of ordering was used to test the accuracy with respect

to changes of the altitude mesh size and to study the effects of various ion drag

and viscosity coefficients.
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2. ANALYSIS OF FORCES

The Driving Force

The right hand side of our system of equations (4) are the driving forces

fd that arise from the horizontal pressure gradients. The driving force is given

by

d ph (21)

We may derive fd from a given atmospheric model that specifies the density and

temperature distribution as a function of latitude, local time T and height z. I

In the lower thermosphere the driving forces are relatively small and therefore

the geostrophic approximation of the equations of motion given by

2 [C x V] =-lV p (22)
p h

yields fairly accurate results for the wind field. The winds are controlled by the

Coriolis force and are perpendicular to the pressure gradients as is apparent

from equation (22). In the thermosphere this is not true as we may no longer

neglect the other terms of the equation of motion, especially the inertial terms.

The winds that result from an integration of the equation of horizontal motion

are in a direction that is close to the direction of the pressure gradients, as will

be shown by our results and also by previous work on this subject. For this

reason the global pattern of the pressure gradients is the most important param-

eter in the determination of the thermospheric global wind pattern. We shall

specify some of the characteristics of the pressure gradients used in our compu-

tation.
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Similar to most previous calculations (Geisler, 1967, Kohl and King, 1967)

we have chosen the Jacchia model for the determination of the pressure gradients

as this model yields-a density distribution that is in close agreement with satel-

lite drag derived densities in the isothermalregion. The forces are derived by

a differentiation process from the quantities described by the atmospheric model,

therefore the reliability of the forces so derived will be considerable less than

that of the density and the temperature given by the model. In particular we

would like to point out the uncertainties that arise when the Jacchia model is

used.

(1) In the Jacchia model the density p and temperature T are continuous

functions of the independent variables 0, -r and z. This is equally true for the

poles. On the other hand the derivatives of density and temperature are not

continuous at the poles and therefore the driving force remains undefined at the

poles. For a global description of the driving forces it is therefore necessary to

modify the Jacchia model in the polar regions. We have used such a modification

(Blum and Harris, 1973) to overcome this difficulty.

(2) The temperature in the Jacchia model is a model parameter and not

necessarily identical with the true kinetic temperature. For this reason the

pressure calculated from Jacchia's model may deviate from the true pressure

both in amplitude and in phase. If incoherent back scatter radar observations

of temperatures are used in place of the Jacchia model temperatures, it may be

expected that a more realistic pressure pattern would be obtained. Such a
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pressure pattern would introduce a phase shift in the wind pattern of approxi-

mately half the phase difference between radar temperature and drag derived

densities.

(3) At present the data on the density and temperature distribution are

inadequate to form a definite global model in the height region between 120 to

250 km. Therefore the pressure gradients deduced from the Jacchia model for

this height region are extremely unreliable and no great validity should be at-

tached to the computed wind pattern below 250 km. The effect of this uncertainty

of the driving force and with it the flow pattern, on the isothermal region is not

very considerable. The reason for this is that the coupling between the flow

patterns at various heights is only through the viscosity term v 2V /3 z 2 . This

term is not very important in the lower thermosphere as the kinematic viscosity

has a relatively low value in this height region. Due to its exponential increase

with height it only becomes important at higher altitudes (Figure 12). The in-

fluence of the flow below 250 km on the flow on the isothermal region will there-

fore be small. The pattern in the isothermal region is essentially determined

by the forces that exist in this height region and not by the flow at lower

altitudes.

(4) Relatively minor modifications of the density and temperature distribu-

tion especially as regards their latitudinal dependence which is less well known

that their local time dependence, may have considerable effect on the meridional

driving force and thereby on the meridional flow pattern. Drag data do not

20



23

permit a determination of the latitudinal variations of the atmosphere that is

sufficiently accurate to conclusively ascertain the meridional pressure gradients.

A slightly different model of the latitudinal density dependence would result in a

substantially altered meridional force. The wind pattern, especially the meri-

dional winds, that would result from the pressure gradients based on the densities

determined from the OGO 6 mass spectroscopic observations (Hedin et al. 1972)

would be different in essentials from the winds derived with the driving forces

based on Jacchia's model.

We shall describe some of the properties of the driving forces that result

from Jacchia's model:

(1) At equinoxes the Jacchia model is symmetric with respect to the equa-

tor. For this reason both amplitudes and phases of the azimuthal driving forces

are equal for the corresponding points of the two hemispheres. The meridional

forces for corresponding points are equal in amplitudes but have a phase differ-

ence of 12 hours, i.e. the forces at corresponding points are both directed either

towards the equator or the respective pole. Furthermore, the diurnally averaged

meridional force (i.e. the Fourier component of order zero) is directed towards

the equator for both hemispheres. It has a maximum amplitude at a latitude be-

tween 40° and 30° . This result differs from Rishbeth's result (1972) who has

determined a vanishing diurnal average meridional force from the Jacchia model.

On the other hand the amplitude of the diurnal variation of the meridional force

is always larger than the diurnally averaged component as shown by figure 5 for

the northern hemisphere.
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(2) At summer solstice the diurnally averaged meridional forces are

directed towards the south pole for all latitudes. They have a maximum near a

latitude of 300. At winter solstice the direction is reversed and the maximum

of the force is at -30° . In contrast to equinox conditions the amplitude of the

diurnal variation of the meridional forces is less than the diurnal average ampli-

tude in the latitude region between 30° to -20° for summer solstice conditions.

Therefore the meridional forces in this latitude belt point during the whole di-

urnal cycle to the south in summer and north in winter. Figure 6 shows this

behaviour of the driving forces at summer solstice conditions.

(3) In the Jacchia model the shape of the local time variation of the pressure

and especially its extrema, are independent of latitude. From this follows im-

mediately that all Fourier components of the azimuthal and meridional driving

forces are 90 ° out of phase.

(4) We shall investigate the dependence of the driving forces on height and

solar activity. It will be seen that in the isothermal region a first approximation

yields driving forces that increase almost linearly with height and are nearly

independent of solar activity. These properties of the driving forces can easily

be demonstrated by numerical computations based on the Jacchia model. With

respect to the linear height dependence this is shown in figures 5 and 6. Analyti-

cally these properties become apparent when the slight dependence of the driving

forces on the variation of the mean molecular weight M with latitude and local

time is neglected. In order to show the dependence of the driving forces on the

separate variations of temperature and density we may rewrite equation (21)
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1 RT R RT
=fd = - Vh p =-_ T7h 1n p n M Vh T + _ V7h M (23)

d M h Mh m 

d - gHVh 1 n P = -gHVh (in P0 - dz/H) (24)
Z

0

with H the mean scale height and R the universal gas constant.

Using (24) as our starting point we note that in the Jacchia model the pres-

sure P at the lower boundary does not depend on geographical position, local

time and solar activity. Therefore

f = gH j~ ~-( ~dz (25)
~x z

z0
d i x (H)(5

where we have replaced Vh by 3/ax for convenience of notation and x is any

horizontal coordinate. The forces for to a single atmospheric constituent become

3 3 d~~~~~~~z
fd = ax ( d gT x Z (26)f~~~~~dz~T =1 gT Jxx

0 0

The variations of the temperature T are derived from the Jacchia model

T(z, x) = T.(x) - (T.(x) - T1 2 0 ) exp (- c(z - z0 )) (27)

where cr is related to the temperature gradient at the lower boundary and is only

slightly dependent on T., the exospheric temperature. T. itself is dependent on

x (local time and latitude) and on the solar activity S

T. (S, x) = To (1 + a S) r(x) (28)
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where a = 3.24 (flux units')
-

and not depending on either x or S, To = 383 ° an

extrapolated value of the exospheric temperature for S = 0 and r(x) describes

the dependence of the exospheric temperature on latitude and local time. As will

be seen in the following, the near independence of the driving forces on solar

activity is due to the possibility to express the exospheric temperature by eq.

(28) where the function r is independent of S. Equations (27) and (28) make it

possible to evaluate the integral dz/T in closed form with the result
zo

J dz/T = (z - z0 )/Tm (S, x) + In (T(o (T. (S, x)cr) (29)
zo

The force fd becomes for the isothermal region, where T is replaced by T.,

fd = gzr + gT. o a (1 (n )/T _) (30)

The second term of (30) is independent of the height z. The linear dependence

of the forces on altitudes results immediately from (30) with the coefficient

-g/T 'aTJ/3x. The variation of the forces with solar activity is given by

afd/aS = gz -- (ln T,,) - g/c - T. (in (T/T120)/T) (31)

The first term of (31) vanishes due to the form of T. according to (28). The

second term must be calculated explicitly:
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-a -a (32)asTO~~~~x (i~;)T0 as ax(n -a120 s ((Tl2)U T 

The first term of (32) vanishes again because it is a mixed derivative of in T .

A further evaluation of the second term of (32) yields the final result

a f /S _ g r ' a (33)
d c- r 1 + aS

In order to evaluate the relative change offd with solar activity we use the

simple estimate

fdl gZ (34)
r

derived from (26) and therefore

1 | fd| 1 a (35)
Qo 'a S crz 1 + aS

For the determination of the relative change of fd given by (35)-we have to use the

constants of the Jacchia model (o- 0.03 kmn-'). For a solar activity S = 200

and a height z = 300 km we obtain

1 fd 1 (36)-afd ~~~~~~~~~(36)
" d= 'a 1800

A change of 50 flux units would therefore cause only a fractional change of the

forces of about 3% which is insignificant. While our derivation is not strictly
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correct for the real atmosphere which has several constituents, it is a good ap-

proximation for the isothermal region because there the driving forces are

mainly due to the variations of atomic oxygen which is the major constituent in

the isothermal region below 500 km. The exact numerical computation for the

dependence of the forces on solar activity bears out the above estimates: below

250 km the dependence of the driving force on solar activity is complicated and

no clear trend is easily discernable, above 250 km the near independence of the

driving force on solar activity is reaffirmed by the numerical results.

The local time and latitudinal distribution of the driving force at a height of

300 km is shown for both equinox and solstice conditions in figures 7 and 8.

The Ion Drag Force

The ion drag force fion per unit mass is given by

N. ~~~~~~(37)ion
ion in (Vion ) NN

where Vion is the ion velocity and vin the ion-neutral collision frequency for

momentum transfer. The collision frequency is proportional to the density

and depends slightly on the types of ions present (Stubbe, 1968). The drag force

is therefore determined by the ion velocity and the ion distribution. We have not

used the individual distributions for each ion species for the determination of

fion but usedthe approximate expression (Chapman, 1965) that gives the ion-

neutral collision frequency as a function of N the total density. This

expression is

vin/N = 2.6 x 10-
9

/vI sec
-

I

cm3 (38)
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where N is the neutral number density and M the average molecular weight. An

alternate approximation of the ion drag force (Dalgarno, 1964) follows from the

relation

in/N = 7.3 10-10 (T/1000) 0 4 (39)

Expression (39) yields slightly different results for the ion drag force. A more

elaborate procedure for the evaluation of vi is possible, but not necessary as

the uncertainties of the ion density distribution determine the accuracy.

In the height region where the collision frequency vin is larger than the

ion gyro frequency the ion velocity will be close to the neutral velocity and the

ion drag force will be negligible. This is the case for altitudes below 150 km.

In the height region where the ion gyro frequency is much larger than the

collision frequency vin the ions are constrained by the electromagnetic forces.

There exists a transition region between 150 km to 200 km where the ion motion

is controlled partially by the neutral motion and partially by the electromagnetic

forces. In this region the drag forces are difficult to estimate (Lindzen, 1967),

although the relative low ion densities in this height region tend to decrease the

importance of the ion drag force in the equations of motion.

Thus in addition to the uncertainties of the pressure gradients in the lower

thermosphere the uncertainty of the ion drag force will contribute to the un-

reliability of the computed wind field in the lower thermosphere.
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It has been inferred that electric fields in the ionosphere exist due to the

Sq current distribution. Generally the electric fields will be perpendicular to

the geomagnetic field and the ion motion perpendicular to the geomagnetic field

will be given by

_~~~~~~~

ion =- Ex B/B2 (40)

The ion motion parallel to the geomagnetic field is determined by the neutral

motion and given by

V0on1 -- (VN B)B/B 2 (41)

where VN is the neutral air velocity. In the absence of electric fields the ion

drag force does not depend on the magnitude of B, but only on the direction

of B. Assuming electric fields do exist and are well-known, then the inclusion

of the ion drag due to the ion velocity normal to B in our equations of motion

does not pose any problem. The term [ExB]/B2 does not involve the neutral

velocities and one could therefore just add the ion drag due to the electric fields

to the right hand side of the equations, i.e. to the pressure gradients.

Electric fields in the ionosphere are difficult to observe directly, so that

the information about them comes from theoretical deductions of ionospheric

behaviour. Commonly the electric field of the E-region is extrapolated to

higher altitudes. From Maeda's (1971) analysis a lunar component and a solar

component of the electric potential coexist. Both are of the same order of
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magnitude but for the steady state wind field only the solar component is re-

quired. Following Maeda we have calculated the ion velocities normal to B and

have found them to depend strongly on the higher harmonics of Maeda's analysis.

For instance if only the P l with 1 2 are included then ion velocities of less

than 10 m/sec result. If P1 with 1 4 are included the ion velocities would

become as large as 57 m/sec. Inclusion of even high terms of the harmonic

representation of the electric potentials would probably result in entirely differ-

ent, and probably larger ion velocities, as the amplitudes of the higher spherical

harmonics in the representation of the electric potentials do not fall rapidly

enough to compensate the effects of differentiation. For this reason the ion

velocities normal to B in the height region of interest to us are not well known.

Generally (Rishbeth, 1972) it is assumed that they are less than 30 m/sec. In

the region where the neutral winds are mainly determined by the amplitude of

the ion drag force, a first approximation of the effect of the ion motion normal

to B will be simply the addition of the ion velocity to the wind velocity. This is

seen from the linearized equations of motion. Thus, while the ion motion normal

to B may be important for particular aspects of the global wind field, like the

diurnal average zonal motion, i.e. the superrotation of the atmosphere, they are

not very significant for the general global flow pattern. From these considera-

tion, especially the uncertainty of the electric fields themselves, we have decided

not to include the electric fields in our wind computations. With the above

assumptions the ion drag force fion becomes
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f(io) 2.6 x 10- N i V( 0 )//* cos2 /(1 - 0.75 sin2 0) (42)

f i) 2.6 x 10 - N
i

V(¢)/v
ion

By dividing the equations of motion (1.4) by cd we may define a dimensionless

ion drag coefficient

Dion 2.6 x 10
-

Ni/(fM (43)
ionI

The horizontal component of the magnetic field B deviates from the meridional

direction by the declination angle D. D depends both on longitude and latitude.

If the dependence of D on longitude is taken into account, then the ion drag forces

become dependent on universal time. We cannot include in our treatment the

variations of D without raising the number of independent variables from 3 to 4

and abandoning the steady state approach. We have therefore to assume that the

earth's magnetic dipole is alligned with the earth's axis. This simplification,

equivalent to setting D = 0 causes the meridional ion drag force to vanish at the

equator. As a result of the reduced drag in the equatorial zones rather high

meridional velocities and velocity gradients result from the computation, es-

pecially at solstice conditions. This is obvious for the linearized equations of

motion, which become extremely simple at the equator as the Coriolis force

also vanishes. The non-linear equations avoid this difficulty, but even then the

meridional velocity gradients are large and the convergence process is slow or

the iteration scheme may even diverge. Without making assumptions contrary to
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physical realities we may avoid this difficulty by noting that the meridional ion

drag depends only on the absolute value of the angle between the magnetic field

lines and the meridian. We may take the average value of this angle at the equator

as 11.3 ° , as a magnetic dipole tilted by 11.3 ° gives the best fit to the geomagnetic

field (Mead, 1970). The latitude (M which corresponds to a magnetic inclination

I of 11.3 ° is 5.8 ° . In line with this reasoning we have substituted at all latitudes

4) with I D I < 5.8 ° in the expression for the meridional ion drag given by (42)

instead of the factor cos2 0 /(1- 0 .75 sin2 0) the value of that factor at a latitude

of 5.80. This value is 0.0384. Due to this substitution the meridional ion drag

force does not vanish at the equator and we have avoided difficulties in the

convergence process.

In order to complete the global representation of the ion drag force it is

necessary to know the ion density as a function of height, latitude and local time,

day of the year and solar activity. It will be a challenge for theorist in the future

to construct a three dimensional model where the ion density is calculated con-

sistently with the neutral density and the wind system. In our computation we

have not attempted such a consistent treatment but used a given model of ion

distribution to determine the drag force. In a early stage of a our computation

an approximate distribution was used, but in the final calculation we have used

the Penn State Ionospheric Model which gives numerical values for the ion

densities as a function of all the above mentioned parameters. In addition, the

ion density in the Penn State model is dependent on the geographic longitude X.
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This Is not in line with our steady state picture that does not allow functional

dependence on the longitude alone, but only on the local time X - cot. In order to

adept the Penn State model for our purposes we have averaged the ion densities

over all longitudes and used these average densities in order to determine the

drag force. In the actual computation the Fourier coefficients up to second order

of this longitudinal averaged drag force where used. In this process the longi-

tudinal averaging reduced the semi-diurnal component of the drag force relative

to the average drag force to a considerable degree when a comparison was made

with the drag force that referred to a given fixed longitude. The diurnal component

of the longitudinal-averaged drag force was also reduced, but somewhat less

than the semi-diurnal component. The diurnal average of the ion drag coefficient

is represented in figures 9 and 10 for a solar activity of Flo 7 = 200 at both

equinox and solstice conditions. Figure 11 shows also the time dependent com-

ponents of the ion drag for equinox at the equator. The above mentioned figures

show that the ion drag coefficient, even after our longitudinal averaging, is not

entirely symmetric at equinoxes. Also the winter and summer solstice coef-

ficients are not exactly anti-symmetric with respect to the equator. The causes

of these deviations from symmetry are the various geographical and seasonal

anomalies of the ion distribution. For these reasons the computed winds will

also have slight deviations from the symmetry that would be expected from the

symmetric pressure gradients.

32



35

The Viscous Forces

The viscous forces in the equations of motion are given by

f.=/p ~(V2 V + V(V' V))

where ,I is the dynamic viscosity coefficient and X = u/p the kinematic

viscosity. The term 1/3 V (V V) is small, it vanishes completely for a constant

density flow. In neglecting it and also dropping 3 v() /30 and a v ( r)/a we

obtain for the viscous forces in the azimuthal and the meridional direction in

spherical coordinates (Eskinazi, p. 206):

fv() = 1 V+ V() 2 cos 0 +V 0)
(72 - r 2 sin2 O + r 2 sin2 O / 

f (0) = (2 v 6 ) -2C (46)

vis + ~~~~~~~~~~~~~~(45)

r2 sin 2 0 r2 sin2 0 a /
2 ~~v(6) 2 cos 6 VO

sociated with horizontal velocity shears.

The vertical viscosity is approximately equal to the expression 77 -2 V/p z2

which is usually used in an approximate treatment of the equations of motion.

In our treatment we have included the horizontal viscosity as well (except at

the poles where it is negligible small). It is given by the expressions
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1hf(,9)= 1 -a _Iav'0) 1 a2V0) v() 2 cosO DVO°lf,-(9) _ 1 a inO - + -os V ( 4 7 )
7 Vs r 2 sin /+ r2 sin2O )~2 r2 sin2 6 r2 sin20 -a

l f() l 06)~v 1 - }0 1 a2V(°) v 2cos XaV(i) (48)
__ ___ - q_ _in+ (48)

77 r 2 sinOaO \ -a / r 2 sin2 0 a2 r 2 sin20 r 2 sin2 / aD,

While the vertical viscosity terms are at all latitudes of great importance for

the resulting flow pattern, the horizontal viscosity terms are only important

when the meridional or azimuthal velocity gradients are large. Our results

show that this is indeed the case in a band of latitudes near the equator. The

order of magnitude of the horizontal viscosity terms becomes in this narrow

latitude band almost as large as the main terms of the equation of motion.

Furthermore the inclusion of the horizontal viscosity in the calculation facili-

ties the convergence of the iteration process, because the horizontal velocity

gradients are decreased by it and therefore the non-linear terms of the con-

vective derivative of the velocity become smaller, thereby decreasing the in-

fluence of the nonlinearities and speeding up the convergence process.

The kinematic viscosity increases exponentially with altitude because the

density decreases exponentially. Generally an approximation for the viscosity

is used (Rishbeth, 1972). In our calculations a somewhat more accurate method

was applied: The dynamic viscosity coefficient as a function of temperature for

the various atmospheric constituents was taken from the results of Yun et al.

(1962) and then the Jacchia model was used to calculate the appropriate tem-

perature and composition at the latitude, altitude and local time in question.
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For each altitude and latitude the value of the kinematic viscosity was Fourier-

analysed and the resulting Fourier coefficients up to second order used in the

computations. The exact expression for the dynamic viscosity coefficient we

used was

= i (T -273.a) i ni/N (49)

where the summation was for molecular nitrogen, molecular oxygen and atomic

oxygen. n. are the respective number densities, N the total number density

and the 0i and ai are

,zOi = 4.017.10
- 4 , 4.771 110 4 , 4.771.10-

4

ai =0.62, 0.59, 0.59 i I 1 to 3

The dependence of the kinematic viscosity in the atmosphere on height is shown

in figure 12 both for the diurnal average value of the viscosity and for the time-

dependent components. It is seen that the ratio of the diurnal component to the

diurnal average increases with height from a value zero at 120 km to about 20%

at 500 kilometers. This shows the importance of including a diurnal variation

of the viscosity in the isothermal region. The time of the maximum of the

viscosity also changes considerably from the lower thermosphere, where it is

in phase with the temperature, to the isothermal region where it has a phase

difference of 12 hours relative to the maximum of density. In the upper thermo-

sphere the diurnal variation of density becomes more important than the diurnal
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variation of temperature for the evaluation of the kinematic viscosity which is

approximately proportional to T ./p.

Boundary Conditions

(a) Lower Boundary

Little is known about the steady state diurnal variation of the atmosphere in

the 120 km height region. For this reason no observationally founded assumption

regarding the lower boundary conditions for the global thermospheric wind field

can be made. The pressure gradients are probably very small in this region, but

so are the viscous and drag forces. For these reasons a steady state wind velocity

of the order of 100 m/sec at 120 km cannot be discounted. In our computation we

have assumed no winds at 120 km in line with the Jacchia model used by us. Fortu-

nately the effect of a possible wind field at 120 km on the global wind pattern above

180 km is negligible, as the coupling between adjacent height layers is only through

the viscosity term of the equation of motion. The kinematic viscosity coefficient

at 120 km is almost 5 orders of magnitude less than at 500 km (Figure 12), thereby

decreasing the coupling to a very considerable degree. We performed a test cal-

culation with a non-vanishing wind field at 120 km. Noor only very little change

in the resulting wind fields above 160 km were noted as will be shown in Part 2.

This result is also in accordance with the result of Lindzen (1967).

(b) Upper Boundary

The upper boundary conditions are derived generally from considerations

involving the viscous forces. It is easy to see (Rishbeth, 1972) that ' 2 V/ar2 -0
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at exospheric heights is required in order to balance the equations of motion.

The generally accepted deduction that this implies also ~V/~r - 0 is not as well

established by strict theoretical considerations. Nevertheless we have also

used in our calculations the condition aV/a r - 0. In a discussion whether

boundary conditions with a V/ar / 0 are possible it would be necessary to

analyse the transition region between the collision controlled height region and

the collision free region above the exosbase.

Chapman and Cowling (1952) have discussed the behaviour of the viscosity

coefficient at low gas densities and have found it to be decreasing under certain

conditions, but no strict treatment of the transition region at the exosbase re-

garding the horizontal wind shears is known to the authors, so that a possibility

of 3V/- r / 0 cannot be entirely discounted. In this respect it may be remembered

that King-Hele (1971) has observed the average azimuthal velocity of the

atmosphere to be decreasing above 300 km to at least 500 km. Obviously these

observations cannot be reconciled with a boundary condition 3V/ar = 0, so that

observational evidence does also not decisively confirm the assumption aV/h r

= 0 that is generally made.

In part 2 the resulting wind field will be discussed.
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FIGURE CAPTIONS

Figure 1. Structure of Jacobian Matrix J = ?F/3V¥ according to iteration

method 1 (basic Newton-Rapphson iteration scheme for one altitude layer

superimposed Gauss-Seidel iteration over altitude range). For iteration

method 2 structure would be similar, but there would be 37 blocks of 190

rows. Each block would correspond to one latitude. Matrix J is tri-diagonal,

all elements not in blocks indicated are zero. For these elements no com-

puter storage is required. Sub-matrices typeDk: All elements of these

matrices correspond to the same altitude. They arise from the various

terms of the equations of motion. Some terms are also due to viscosity.

Sub-matrices types Lk and Uk: These sub-matrices couple adjacent

altitude layers by the viscosity term ~ (D 2 V//Bz 2 ). They are diagonal in the

sense that all their sub-blocks of order 10 x 10 are on the diagonal. If

viscosity would be neglected the matrices Lk and Uk would vanish. Sub-

matrix D 1 9 : This sub-matrix has a special structure due to upper boundary

condition aV/3z = 0 at 500 km.

Figure 2. Fine structure of sub-matrices of type Dk shown in Figure 1. M.atrices

Dk have sub-blocks of order 10 x 10 denoted by DDki, DLki and DUki. Most

of the elements of DDkl and DDk3 7 are zero due to the polar boundary condi-

tions. The elements of the matrix DDki are due to the main terms of theki

equation of motion. Some of them are also due to the non-linear terms of

the convective derivative and the viscosity coupling. Matrices DLki and
ki
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DUki couple various latitudes at a fixed altitude. These sub-matrices would

vanish when the non-linear terms of the convective derivative and the hori-

zontal viscosity coupling are neglected.

Figure 3. Structure of sub-matrices Lk and Uk of Figure 1. The matrices

Lk and Uk are diagonal in the sense that their sub-blocks, which themselves

are matrices of order 10 x 10, are all on the diagonal. The reason for this

diagonal structure is that viscosity coupling between adjacent altitude layers

is only considered between mesh points of the same latitude. In method 2

the equivalent matrices would couple adjacent latitudes at the same altitude

and would therefore not have this simple structure. Matrices LDki and

LDk37 have special form due to boundary conditions at the poles. Matrices

LDki couple adjacent height layers due to vertical viscosity. Coupling exists

only when latitudes are equal. The sub-structure of LDki shows that BM

couples the meridional flow and BZ the zonal flow. As the viscous drag

does not couple meridional to zonal flow when the altitudes differ, the off-

diagonal sub-blocks of LD vanish.
ki

Figure 4. Structure of matrices DLki * DDk, and DUki of Figure 2. Computor

storage for all the 300 elements detailed here is required. Matrices DDM,

DDZ and DD1 have numbers as their elements. DDM, DDZ and DD1 are

5 x 5 matrices, DL is a 10 x 10 matrix. Matrices DD1 couple meridional to

zonal velocities. Their elements are due to the Coriolis force, the non-

linear elements of the convective derivative and the horizontal viscosity
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terms. The off-diagonal elements of matrices DDM and DDZ couple the

various Fourier modes. If a further linearization of the equations of motion

is made (additional to the linearization of the convective derivative) and the

products of higher Fourier modes are neglected then all off-diagonal ele-

ments of columns 2-5 and rows 2-5 would vanish and the various Fourier

modes decouple, thus greatly simplifying the computations.

Figure 5. The height and latitude dependence of the driving force as deduced from

Jacchia's model at equinox conditions with a solar activity F10O 7 = 200. The

diurnal average meridional force and the diurnal amplitudes of the azimuthal

and meridional forces are shown. The diurnal average of the azimuthal force

is zero, or nearly zero. The forces are shown for altitudes of 200, 300, 400

and 500 km. The Jacchia model was modified in the polar region in order

to fulfill the boundary conditions.

Figure 6. The same forces as shown in figure 5 for summer solstice conditions.

Figure 7. The global pattern of the driving force at a height of 300 km for

equinox conditions.

Figure 8. The global pattern of the driving forces for summer solstice conditions.

Figure 9. The latitude dependence of the dimensionless diurnally averaged ion

drag coefficient for equinox conditions and a solar activity of F 10 7 = 200.

The coefficients are represented for the altitudes 140, 220, 300, 380 and

460 km. Ion densities are deduced from the Penn State ionospheric model.
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Figure 10. The latitude dependence of the diurnally averaged ion drag coefficients

for summer solstice conditions and a solar activity of F10 7 = 200.

Figure 11. The height dependence of the average and time-dependent Fourier

coefficients of the ion drag at equinox conditions and a solar activity of

F10. 7 = 200.

Figure 12. The height dependence of the diurnal average and time-dependent

Fourier coefficients of the kinematic viscosity for equinox conditions at

the equator as deduced from Jacchia's model at a solar activity of

F = 200.
10. 7
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STRUCTURE OF MATRIX J-(STAGE 2)
STRUCTURE OF MATRICES Lk AND Uk

370 COLUMNS

BLOCK 1
N-POLE

BLOCK 2
0=50

BLOCK 35
0=170 °

BLOCK 36
0=175 °

BLOCK 37
S-POLE

370 ROWS IN 37 BLOCKS OF 10 ROWS EACH.
EACH BLOCK CORRESPONDS TO ONE LATITUDE.

Figure 3
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EQUINOX CONDITIONS F=200
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ION DRAG COEFFICIENT - DIURNAL AVERAUt
SUMMER SOLSTICE CONDITIONS F=200
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KINEMATIC VISCOSITY
EQUINOX CONDITIONS - EQUATOR

F=200
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Figure 12
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